相关试题
当前位置:首页 > 高中数学试题 > 平面与平面垂直的性质
题型:填空题
难度:困难
在互相垂直的两个平面中,下列命题中
①一个平面内的已知直线必垂直于另一个平面内的任意一条直线;
②一个平面内的已知直线必垂直于另一个平面内的无数条直线;
③一个平面内的任意一直线必垂直于另一个平面内的无数条直线;
④过一个平面内的任意一点作垂直于另一个平面的直线必在第一个平面内;
正确命题的序号是   
题型:解答题
难度:中等
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.
(1)求证:AD⊥平面PQB;
(2)若平面PAD⊥平面ABCD,且manfen5.com 满分网,求四棱锥M-ABCD的体积.
题型:解答题
难度:中等
如图,正方体ABCD-A1B1C1D1的棱长为2,点E在棱CC1上,点F是棱C1D1的中点
(1)若AF∥平面BDE,求CE的长;
(2)若平面BDE⊥平面A1BD,求三棱锥F-ABE的体积.

manfen5.com 满分网
题型:解答题
难度:困难
如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.
(1)现给出三个条件:①manfen5.com 满分网;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;
(2)在(1)的条件下,求三棱锥P-ABC的体积.

manfen5.com 满分网
题型:解答题
难度:困难
如图,在四棱锥D′-ABCE中,底面为直角梯形,AB=2BC=2CE=2,且AB⊥BC,AB∥CE,平面D′AE⊥平面ABCE.
(1)求证:AD′⊥EB;
(2)若D′A⊥D′E,D′A=D′E,求直线AC与平面ABD′所成角的正弦值.

manfen5.com 满分网
题型:解答题
难度:压轴
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且manfen5.com 满分网是PB的中点.
(1)判断在PD上是否存在一点E,使面ABE⊥面PCD,并说明理由;
(2)求面AMC与面BMC所成的二面角的大小;
(3)求点D到面MAC的距离.

manfen5.com 满分网
题型:解答题
难度:困难
在如图1所示的等腰梯形ABCD中,AB∥CD,manfen5.com 满分网,E为CD中点.若沿AE将三角形DAE折起,并连接DB,DC,得到如图2所示的几何体D-ABCE,在图2中解答以下问题:
manfen5.com 满分网
(Ⅰ)设G为AD中点,求证:DC∥平面GBE;
(Ⅱ)若平面DAE⊥平面ABCE,且F为AB中点,求证:DF⊥AC.
题型:解答题
难度:简单
三棱柱ABC-A1B1C1中,面BB1C1C⊥面ABC,AB=AC,D是BC的中点,M为AA1上一动点.
(1)求证:AD⊥CC1
(2)若AM=MA1,求证:AD∥平面MBC1
(3)若面MBC1⊥面BB1C1C,求证:AM=MA1

manfen5.com 满分网
题型:解答题
难度:简单
如图:在正方体ABCD-A1B1C1D1中,O是AC的中点,E是线段D1O上一点,且manfen5.com 满分网
(Ⅰ)求证:DB1⊥平面CD1O;
(Ⅱ)若平面CDE⊥平面CD1O,求λ的值.

manfen5.com 满分网
题型:解答题
难度:压轴
如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面四边形ABCD为直角梯形,∠B=∠C=90°,AB=3CD,∠PBC=30°,点M是PB上的动点,且manfen5.com 满分网(λ∈[0,1]).
(1)当manfen5.com 满分网时,证明CM∥平面PAD;
(2)当平面MCD⊥平面PAB时,求λ的值.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.