相关试题
当前位置:首页 > 高中数学试题 > 等差数列与等比数列的综合
题型:解答题
难度:困难
已知等比数列{an}的公比为q(q≠1)的等比数列,且a2011,a2013,a2012成等差数列.
(Ⅰ)求公比q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
题型:解答题
难度:简单
已知各项为正的数列{an}的前n项和为Sn,且对任意正整数n,有a2an=S2+Sn
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)若数列manfen5.com 满分网的前n项和为Tn,求Tn的最大值.
题型:解答题
难度:困难
已知数列{an},{bn} 满足:a1=0,b1=2013,且对任意的正整数 n,an,an+1,bn 和 an+1,bn+1,bn均成等差数列.
(1)求 a2,b2的值;
(2)证明:{an-bn}和{an+2bn} 均成等比数列;
(3)是否存在唯一的正整数 c,使得 an<c<bn恒成立?证明你的结论.
题型:解答题
难度:中等
已知数列{an}的各项排成如图所示的三角形数阵,数阵中每一行的第一个数a1,a2,a4,a7,…构成等差数列{bn},Sn是{bn}的前n项和,且b1=a1=1,S5=15.
( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)设manfen5.com 满分网,当m∈[-1,1]时,对任意n∈N*,不等式manfen5.com 满分网恒成立,求t的取值范围.

manfen5.com 满分网
题型:解答题
难度:困难
已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足(an+1-an)g(an)+f(an)=0,a1=2,manfen5.com 满分网
(I)求数列{an}的通项公式;
(Ⅱ)求数列{bn}中最大项.
题型:填空题
难度:困难
把数列manfen5.com 满分网的所有数按照从大到小,左大右小的原则写成如右图所示的数表,第k行有2k-1个数,第k行的第s个数(从左数起)记为A(k,s),则manfen5.com 满分网这个数可记为A(   
manfen5.com 满分网
题型:解答题
难度:困难
设等差数列{an}的公差d≠0,数列{bn}为等比数列,若a1=b1=a,a3=b3,a7=b5
(1)求数列{bn}的公比q;
(2)将数列{an},{bn}中的公共项按由小到大的顺序排列组成一个新的数列{cn},是否存在正整数λ,μ,ω(其中λ<μ<ω)使得λ,μ,ω和cλ+λ,cμ+μ,cω+ω均成等差数列?若存在,求出λ,μ,ω的值,若不存在,请说明理由.
题型:解答题
难度:中等
已知首项为manfen5.com 满分网的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设manfen5.com 满分网,求数列{Tn}的最大项的值与最小项的值.
题型:解答题
难度:简单
已知Sn是数列{an}的前n项和,且a1=1,manfen5.com 满分网
(1)求a2,a3,a4的值;
(2)求数列{an}的通项an
(3)设数列{bn}满足manfen5.com 满分网,求数列{bn}的前n项和Tn
题型:解答题
难度:中等
给定数列a1,a2,…,an.对i=1,2,…,n-1,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai-Bi
(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值;
(Ⅱ)设a1,a2,…,an-1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn-1是等比数列;
(Ⅲ)设d1,d2,…,dn-1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,an-1是等差数列.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.