设分别为双曲线
的左、右顶点,双曲线的实轴长为
,焦点到渐近线的距离为
.
(1)求双曲线的方程;
(2)已知直线与双曲线的右支交于
两点,且在双曲线的右支上存在点
,使
,求
的值及点
的坐标.
已知椭圆及直线
:
.
(1)当直线和椭圆有公共点时,求实数的取值范围;
(2)求被椭圆截得的最长弦长及此时直线的方程.
设实数
满足
,其中
;
实数
满足
(1)若,且
为真,求实数
的取值范围;
(2)若是
的必要不充分条件,求实数
的取值范围.
设命题;命题
,使得
,如果命题
或
为真命题,命题
且
为假命题,求实数
的取值范围.
已知分别是椭圆
的左顶点和上顶点,点
是线段
上的任意一点,点
分别是椭圆的左,右焦点,且
的最大值是
,最小值是
,则椭圆的标准方程 .
如图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降2米后,水面宽________米.