已知椭圆C:的离心率与等轴双曲线的离心率互为倒数关系,直线
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA、MB交椭圆于A、B两点,设两直线的斜率分别为k1、k2,且k1+k2=4,证明:直线AB过定点(,-l).
已知过抛物线的焦点,斜率为
的直线交抛物线于
,
两点,且
(1)求该抛物线的方程;
(2)为坐标原点,
为抛物线上一点,若
,求
的值.
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn;
(2)求+
+…+
.
已知函数在区间
上的最大值为2.
(1)求常数m的值;
(2)在△ABC中,角A、B、C所对的边是a、b、c,若,△ABC面积为
.求边长a.
对于实数,定义运算“
”:
,设
,且关
于的方程为
恰有三个互不相等的实数根
,则
的取值范围是_____.
抛物线的动弦
的长为
,则弦
的中点
到
轴的最短距离为_______________.