下列说法中正确的是( )
A、一个命题的逆命题为真,则它的逆否命题一定为真
B、“”与“
”不等价
C、“,则
全为
”的逆否命题是“若
全不为
,则
”
D、一个命题的否命题为真,则它的逆命题一定为真
已知函数的图象过坐标原点
,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点
,使得
是以
为直角顶点的
直角三角形,且此三角形斜边中点在轴上?说明理由.
已知椭圆的离心率为
,短轴端点到焦点的距离为2.
(1)求椭圆的方程;
(2)设点是椭圆
上的任意两点,
是坐标原点,且
.
①求证:原点到直线
的距离为定值,并求出该定值;
②任取以椭圆的长轴为直径的圆上一点
,求
面积的最大值.
已知是函数
的一个极值点.
(Ⅰ)求;
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数
的图像有
个交点,求
的取值范围.
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(1)求证:;
(2);
(3)设为
中点,在
边上求一点
,使
平面
求
.
设各项均为正数的数列的前
项和为
,满足
且
构成等比数列.
(1)证明: ;
(2)求数列的通项公式.