登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设a为实数,函数f(x)=ex-2x+2a,x∈R. (1)求f(x)的单调区间...
设a为实数,函数f(x)=e
x
-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x>0时,e
x
>x
2
-2ax+1.
(1)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值. (2)设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明ex>x2-2ax+1. (1)【解析】 ∵f(x)=ex-2x+2a,x∈R, ∴f′(x)=ex-2,x∈R. 令f′(x)=0,得x=ln2. 于是当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln2) ln2 (ln2,+∞) f′(x) - + f(x) 单调递减 2(1-ln2+a) 单调递增 故f(x)的单调递减区间是(-∞,ln2), 单调递增区间是(ln2,+∞), f(x)在x=ln2处取得极小值, 极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a),无极大值. (2)证明:设g(x)=ex-x2+2ax-1,x∈R, 于是g′(x)=ex-2x+2a,x∈R. 由(1)知当a>ln2-1时, g′(x)最小值为g′(ln2)=2(1-ln2+a)>0. 于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增. 于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0). 而g(0)=0,从而对任意x∈(0,+∞),g(x)>0. 即ex-x2+2ax-1>0, 故ex>x2-2ax+1.
复制答案
考点分析:
相关试题推荐
已知函数
.
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)求函数f(x)在区间
上的值域.
查看答案
对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x
∈D,使得当x∈D且x>x
时,总有
,则称直线l:y=kx+b为曲线y=f(x)和y=g(x)的“分渐近线”.给出定义域均为D={x|x>1}的四组函数如下:
①f(x)=x
2
,g(x)=
;
②f(x)10
-x
+2,g(x)=
;
③f(x)=
,g(x)=
;
④f(x)=
,g(x)=2(x-1-e
-x
)
其中,曲线y=f(x)和y=g(x)存在“分渐近线”的是
.
查看答案
如图放置的边长为1的正方形ABCD的顶点A、D分别在x轴、y轴正半轴上(含原点)上滑动,则
的最大值是
.
查看答案
函数
的图象与x轴所围成的封闭图形的面积为
.
查看答案
在△ABC中,
,则∠B=
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.