满分5 > 高中数学试题 >

已知函数f(x)=ex-ax,其中a>0. (1)若对一切x∈R,f(x)≥1恒...

已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;
(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x∈(x1,x2),使f′(x)=K恒成立.
(1)根据题意,对f(x)求导可得f′(x)=0,令f′(x)=0,解可得x=lna,分x<lna与x>lna两种情况讨论可得f(x)取最小值为f(lna)=a-alna,令g(t)=t-tlnt,对其求导可得g′(t)=-lnt,分析可得当t=1时,g(t)取得最大值1,因此当且仅当a=1时,a-alna≥1成立,即可得答案; (2)根据题意,由直线的斜率公式可得k=-a,令φ(x)=f′(x)-k=ex-,可以求出φ(x1)与φ(x2)的值,令F(t)=et-t-1,求导可得F′(t)=et-1, 分t>0与t<0讨论可得F(t)的最小值为F(0)=0,则当t≠0时,F(t)>F(0)=0,即et-t-1>0,进而讨论可得φ(x1)<0、φ(x2)>0,结合函数的连续性分析可得答案. 【解析】 (1)f′(x)=ex-a, 令f′(x)=0,解可得x=lna; 当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增, 故当x=lna时,f(x)取最小值,f(lna)=a-alna, 对一切x∈R,f(x)≥1恒成立,当且仅当a-alna≥1,① 令g(t)=t-tlnt,则g′(t)=-lnt, 当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减, 故当t=1时,g(t)取得最大值,且g(1)=1, 因此当且仅当a=1时,①式成立, 综上所述,a的取值的集合为{1}. (2)根据题意,k==-a, 令φ(x)=f′(x)-k=ex-, 则φ(x1)=-[-(x2-x1)-1], φ(x2)=[-(x1-x2)-1], 令F(t)=et-t-1,则F′(t)=et-1, 当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增, 则F(t)的最小值为F(0)=0, 故当t≠0时,F(t)>F(0)=0,即et-t-1>0, 从而-(x2-x1)-1>0,且>0,则φ(x1)<0, -(x1-x2)-1>0,>0,则φ(x2)>0, 因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x∈(x1,x2),使φ(x)=0, 即f′(x)=K成立.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=eax-x,其中a≠0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x∈(x1,x2),使f′(x)>k成立?若存在,求x的取值范围;若不存在,请说明理由.
查看答案
如图,F1、F2分别是椭圆C:manfen5.com 满分网(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)已知△AF1B的面积为40manfen5.com 满分网,求a,b 的值.

manfen5.com 满分网 查看答案
如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:A1C⊥平面BCDE;
(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;
(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.
查看答案
已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项.
(1)求数列{an}的通项公式
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列manfen5.com 满分网的前n项Tn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.