满分5 > 高中数学试题 >

已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2...

已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(1)求a3,a5
(2)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;
(3)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn
(1)欲求a3,a5只需令m=2,n=1赋值即可. (2)以n+2代替m,然后利用配凑得到bn+1-bn,和等差数列的定义即可证明. (3)由(1)(2)两问的结果可以求得cn,利用乘公比错位相减求{cn}的前n项和Sn. 【解析】 (1)由题意,令m=2,n=1,可得a3=2a2-a1+2=6 再令m=3,n=1,可得a5=2a3-a1+8=20 (2)当n∈N*时,由已知(以n+2代替m)可得 a2n+3+a2n-1=2a2n+1+8 于是[a2(n+1)+1-a2(n+1)-1]-(a2n+1-a2n-1)=8 即bn+1-bn=8 所以{bn}是公差为8的等差数列 (3)由(1)(2)解答可知{bn}是首项为b1=a3-a1=6,公差为8的等差数列 则bn=8n-2,即a2n+1-a2n-1=8n-2 另由已知(令m=1)可得 an=-(n-1)2. 那么an+1-an=-2n+1 =-2n+1=2n 于是cn=2nqn-1. 当q=1时,Sn=2+4+6++2n=n(n+1) 当q≠1时,Sn=2•q+4•q1+6•q2+…+2n•qn-1. 两边同乘以q,可得 qSn=2•q1+4•q2+6•q3+…+2n•qn. 上述两式相减得 (1-q)Sn=2(1+q+q2+…+qn-1)-2nqn =2•-2nqn =2• 所以Sn=2• 综上所述,Sn=.
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)满足:①在x=1时有极值;②二次函数图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=f(x2)的单调递增区间与极大值.
查看答案
设椭圆C:manfen5.com 满分网过点(0,4),离心率为manfen5.com 满分网
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为manfen5.com 满分网的直线被C所截线段的中点坐标.
查看答案
如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是高,沿AD把△ABD折起,使∠BDC=90°.
manfen5.com 满分网
(Ⅰ)证明:平面ADB⊥平面BDC;
(Ⅱ)设E为BC的中点,求manfen5.com 满分网manfen5.com 满分网夹角的余弦值.
查看答案
证明下列不等式.
(1)求证:当a、b、c为正数时,(a+b+c)(manfen5.com 满分网)≥9.
(2)已知n≥0,试用分析法证明:manfen5.com 满分网
查看答案
在△ABC中,manfen5.com 满分网
(Ⅰ)求AB的值.
(Ⅱ)求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.