满分5 > 高中数学试题 >

已知命p:∃x∈R,使得x+,命题q:∀x∈R,x2+x+1>0,下列结论正确的...

已知命p:∃x∈R,使得x+manfen5.com 满分网,命题q:∀x∈R,x2+x+1>0,下列结论正确的是( )
A.命题“p∧q”是真命题
B.命题“(¬p)∧q”是真命题
C.命题“p∧(¬q)”是真命题
D.命题“(¬p)∧(¬q)”是真命题
先解出这两个命题对应的不等式,得到这两个命题都是真命题,对于这两个真命题,得到用且连接的符合命题是真命题. 【解析】 ∵命p:∃x∈R,使得x+,解这个不等式的x<0, ∴存在x∈R,使得x+,故本命题正确, 命题q:∀x∈R,x2+x+1>0, ∵x2+x+1>0等价于 ∴∀x∈R,x2+x+1>0,正确, 所给的两个命题都正确, ∴命题“p∧q”是真命题 故选A.
复制答案
考点分析:
相关试题推荐
已知f(x)=ax2-2lnx,x∈(0,e],其中e是自然对数的底.
(1)若f(x)在x=1处取得极值,求a的值;
(2)求f(x)的单调区间;
(3)设manfen5.com 满分网,存在x1,x2∈(0,e],使得|f(x1)-g(x2)|<9成立,求a的取值范围.
查看答案
已知函数manfen5.com 满分网
(I)当0<a<b,且f(a)=f(b)时,求manfen5.com 满分网的值;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
查看答案
已知函数manfen5.com 满分网,(其中ω>0)的最小正周期为π.
(Ⅰ)求ω的值,并求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若manfen5.com 满分网,△ABC的面积为manfen5.com 满分网,求△ABC的外接圆面积.
查看答案
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
已知向量manfen5.com 满分网=(sinx,1),manfen5.com 满分网=(manfen5.com 满分网Acosx,manfen5.com 满分网cos2x)(A>0),函数f(x)=manfen5.com 满分网manfen5.com 满分网的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图象像左平移manfen5.com 满分网个单位,再将所得图象各点的横坐标缩短为原来的manfen5.com 满分网倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,manfen5.com 满分网]上的值域.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.