满分5 > 高中数学试题 >

已知函数,(其中ω>0)的最小正周期为π. (Ⅰ)求ω的值,并求函数f(x)的单...

已知函数manfen5.com 满分网,(其中ω>0)的最小正周期为π.
(Ⅰ)求ω的值,并求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若manfen5.com 满分网,△ABC的面积为manfen5.com 满分网,求△ABC的外接圆面积.
(Ⅰ)利用二倍角公式以及两角和的正弦函数,化简函数的表达式,通过函数的周期,求出ω,然后求出函数的单调减区间. (Ⅱ)利用第一问的结果,求出锐角三角形的角A,通过正弦定理求出三角形的外接圆的半径,然后求解外接圆的面积. 【解析】 (Ⅰ)由已知得f(x)=1+cosωx+cosωx-sinωx =1+cosωx-sinωx =1-sin(ωx-), 于是有=2. ∴函数f(x)的单调递减区间[k],k∈Z. (Ⅱ)由(Ⅰ)以及已知可得, 即sin(2A-)=,又三角形是锐角三角形,所以A=, △ABC的外接圆的半径为, △ABC的外接圆的面积为.
复制答案
考点分析:
相关试题推荐
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
已知向量manfen5.com 满分网=(sinx,1),manfen5.com 满分网=(manfen5.com 满分网Acosx,manfen5.com 满分网cos2x)(A>0),函数f(x)=manfen5.com 满分网manfen5.com 满分网的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图象像左平移manfen5.com 满分网个单位,再将所得图象各点的横坐标缩短为原来的manfen5.com 满分网倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,manfen5.com 满分网]上的值域.
查看答案
已知集合A={x|x2-2x-3<0},B={x|(x-m+1)(x-m-1)≥0},
(1)当m=0时,求A∩B
(2)若p:x2-2x-3<0,q:(x-m+1)(x-m-1)≥0,且q是p的必要不充分条件,求实数m的取值范围.
查看答案
关于函数manfen5.com 满分网,有下列命题
①其图象关于y轴对称;
②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;
③f(x)的最小值是lg2;
④f(x)在区间(-1,0)、(2,+∞)上是增函数;
⑤f(x)无最大值,也无最小值
其中所有正确结论的序号是    查看答案
设定义在R上的奇函数f(x)满足f(x+3)=-f(1-x),若f(3)=2,则f(2013)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.