满分5 > 高中数学试题 >

如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上...

manfen5.com 满分网如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若manfen5.com 满分网,求EC的长.
(Ⅰ)要证明AC是△BDE的外接圆的切线,故考虑取BD的中点O,只要证明OE⊥AC,结合∠C=90°,证明BC∥OE即可 (Ⅱ)设⊙O的半径为r,则在△AOE中,由OA2=OE2+AE2,可求r,代入可得OA,2OE,Rt△AOE中,可求∠A,∠AOE,进而可求∠CBE=∠OBE,在BCE中,通过EC与BE的关系可求 证明:(Ⅰ)取BD的中点O,连接OE. ∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO, ∴∠CBE=∠BEO,∴BC∥OE.…(3分) ∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圆的切线.    …(5分) (Ⅱ)设⊙O的半径为r,则在△AOE中,OA2=OE2+AE2,即, 解得,…(7分) ∴OA=2OE, ∴∠A=30°,∠AOE=60°. ∴∠CBE=∠OBE=30°. ∴在Rt△BCE中,可得EC=.                 …(10分)
复制答案
考点分析:
相关试题推荐
(理)已知函数manfen5.com 满分网,其中a∈R.
(Ⅰ)若x=2是f(x)的极值点,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.
查看答案
如图,已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为manfen5.com 满分网.一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;
(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.

manfen5.com 满分网 查看答案
如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求直线CB与平面PDC所成角的正弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=Msin(ωx+φ)(M>0,|φ|<manfen5.com 满分网)的部分图象如图所示.
(I)求函数f(x)的解析式;
(II)在△ABC中,角A、B、C的对边分别是a、b、c若(2a-c)cosB=bcosC,求f(manfen5.com 满分网)的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.