满分5 > 高中数学试题 >

已知定义域为R的函数是奇函数. (Ⅰ)求a,b的值; (Ⅱ)若对任意的t∈R,不...

已知定义域为R的函数manfen5.com 满分网是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
(Ⅰ)利用奇函数定义f(x)=-f(x)中的特殊值求a,b的值; (Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2-2t)+f(2t2-k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围. 【解析】 (Ⅰ)因为f(x)是奇函数,所以f(0)=0, 即 又由f(1)=-f(-1)知. 所以a=2,b=1. (Ⅱ)由(Ⅰ)知, 易知f(x)在(-∞,+∞)上为减函数. 又因为f(x)是奇函数, 所以f(t2-2t)+f(2t2-k)<0 等价于f(t2-2t)<-f(2t2-k)=f(k-2t2), 因为f(x)为减函数,由上式可得:t2-2t>k-2t2. 即对一切t∈R有:3t2-2t-k>0, 从而判别式. 所以k的取值范围是k<-.
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.
查看答案
已知定义在R上的函数y=f(x)是偶函数,且x≥0时,f(x)=ln(x2-2x+2),
(1)求f(x)解析式;
(2)写出f(x)的单调递增区间.
查看答案
已知集合A={x|a-1<x<2a+1},B={x|0<x<1},若A∩B=∅,实数a的取值范围是    查看答案
计算:manfen5.com 满分网查看答案
如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,那么实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.