满分5 > 高中数学试题 >

如图,已知E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA...

manfen5.com 满分网如图,已知E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA、NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是线段PA上一动点.
(Ⅰ)求证:平面PAC⊥平面NEF;
(Ⅱ)若PC∥平面MEF,试求PM:MA的值;
(Ⅲ)当M是PA中点时,求二面角M-EF-N的余弦值.
(1)连接BD,由已知中E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA、NC都垂直于平面ABCD,由线面垂直的性质及三角形中位线定理可得EF⊥平面PAC,再由面面垂直的判定定理,即可得到平面PAC⊥平面NEF; (Ⅱ)连接OM,由线面平行的性质定理,可得PC∥OM,再由平行线分线段成比例定理得到PM:MA的值; (Ⅲ)由(I)的结论,EF⊥平面PAC,可得EF⊥OM,而在等腰三角形NEF中,由等腰三角形“三线合一”可得NO⊥EF,故∠MON为所求二面角M-EF-N的平面角,解三角形MON即可得到答案. 【解析】 (Ⅰ)连接BD, ∵PA⊥平面ABCD,BD⊂平面ABCD, ∴PA⊥BD, 又∵BD⊥AC,AC∩PA=A, ∴BD⊥平面PAC, 又∵E,F分别是BC、CD的中点, ∴EF∥BD, ∴EF⊥平面PAC,又EF⊂平面NEF, ∴平面PAC⊥平面NEF;(4分) (Ⅱ)连接OM, ∵PC∥平面MEF,平面PAC∩平面MEF=OM, ∴PC∥OM, ∴,故PM:MA=1:3(6分) (Ⅲ)∵EF⊥平面PAC,OM⊂平面PAC,∴EF⊥OM, 在等腰三角形NEF中,点O为EF的中点,∴NO⊥EF, ∴∠MON为所求二面角M-EF-N的平面角,(8分) ∵点M是PA的中点,∴AM=NC=2, 所以在矩形MNCA中,可求得,,, (10分) 在△MON中,由余弦定理可求得, ∴二面角M-EF-N的余弦值为.(12分)
复制答案
考点分析:
相关试题推荐
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.

manfen5.com 满分网 查看答案
a为何值时,三条直线l1:ax-3y-5=0,l2:3x+4y-2=0,l3:4x-2y-10=0不能构成三角形?
查看答案
已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程;
(3)当直线l的倾斜角为45°时,求弦AB的长.
查看答案
如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.
(Ⅰ)求证:PB∥平面EFH;
(Ⅱ)求证:PD⊥平面AHF;
(Ⅲ)求二面角H-EF-A的大小.

manfen5.com 满分网 查看答案
已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S1,S2,S3,满足的等量关系是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.