下列说法错误的是 ( )
A.如果命题“
”与命题“
”都是真命题,那么命题q一定是真命题;
B.命题“若
,则
”的否命题是:“若
,则
”;
C.若命题
:
,则
:![]()
D.“
”是“
”的充分不必要条件
等差数列
的前n项和为
,若
,则
等于( )
A.16 B.32 C.44 D.88
已知函数
,则
的值为( )
A. 2 B.
C.-1 D.4
已知集合
,则
( )
A.
B.
C.
D.![]()
本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵
,向量
.
(I)求矩阵
的特征值
、
和特征向量
;
(II)求
的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)(本小题满分7分)选修4-5:不等式选讲
(Ⅰ)已知:a、b、
;www.7caiedu.cn
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.
(本小题满分13分)
已知数列
满足
,数列
满足
,数列![]()
满足
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)
,
,试比较
与
的大小,并证明;
(Ⅲ)我们知道数列
如果是等差数列,则公差
是一个常数,显然在本题的数列
中,
不是一个常数,但
是否会小于等于一个常数
呢,若会,请求出
的范围,若不会,请说明理由.
