已知函数.
(Ⅰ)当时,求证:函数
在
上单调递增;
(Ⅱ)若函数有三个零点,求
的值;
(Ⅲ)若存在,使得
,试求
的取值范围.
已知数列是以
为公差的等差数列,数列
是以
为公比的等比数列.
(Ⅰ)若数列的前
项和为
,且
,
,求整数
的值;
(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项
,使得
恰好可以表示为该数列中连续
项的和?请说明理由;
(Ⅲ)若(其中
,且(
)是(
)的约数),
求证:数列中每一项都是数列
中的项.
已知⊙
和点
.
(Ⅰ)过点向⊙
引切线
,求直线
的方程;
(Ⅱ)求以点为圆心,且被直线
截得的弦长为 4的⊙
的方程;
(Ⅲ)设为(Ⅱ)中⊙
上任一点,过点
向⊙
引切线,切点为Q. 试探究:平面内是否存在一定点
,使得
为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数(万人)与时间
(天)的函数关系近似满足
,人均消费
(元)与时间
(天)的函数关系近似满足
.
(Ⅰ)求该城市的旅游日收益(万元)与时间
的函数关系式;
(Ⅱ)求该城市旅游日收益的最小值(万元).
如图,在直三棱柱
中,
,
,
为
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面⊥平面
.
.
已知角是
的内角,向量
,
⊥
.
(Ⅰ)求角A的大小;
(Ⅱ)求函数的值域.