满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中...

如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径是manfen5.com 满分网cm,ED=2cm,求AB的长.

manfen5.com 满分网
(1)可证明DE是⊙O的切线,只要证得∠ODE=90°即可. (2)先利用勾股定理求出OE的长,再利用中位线定理,可求出AB的长. (1)证明:连接OD,(1分) ∵O、E分别是BC、AC中点, ∴OE∥AB. ∴∠1=∠2,∠B=∠3. ∵OB=OD, ∴∠2=∠3. ∵OD=OC,OE=OE, ∴△OCE≌△ODE. ∴∠OCE=∠ODE. ∵∠C=90°, ∴∠ODE=90°.(2分) ∴DE是⊙O的切线.(3分) (2)【解析】 在Rt△ODE中, ∵OD=,DE=2, ∴OE=.(5分) 又∵O、E分别是CB、CA的中点, ∴AB=2•OE=2×=5. ∴所求AB的长是5cm.(7分)
复制答案
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到manfen5.com 满分网达端点时,另一个动点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,PQ与⊙O相切?
查看答案
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE.
(1)请探究FD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,BD=manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.
(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);
(2)求证:BC是过A,D,C三点的圆的切线;
(3)若过A,D,C三点的圆的半径为manfen5.com 满分网,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO相似?若存在,求出DP的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.
(1)求证:直线DE是⊙O的切线;
(2)当AB=5,AC=8时,求cos∠E的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.