满分5 > 初中数学试题 >

已知直线y=-x+m与x轴y轴分别交于点A和点B,点B的坐标为(0,6) (1)...

已知直线y=-manfen5.com 满分网x+m与x轴y轴分别交于点A和点B,点B的坐标为(0,6)
(1)求的m值和点A的坐标;
(2)在矩形OACB中,点P是线段BC上的一动点,直线PD⊥AB于点D,与x轴交于点E,设BP=a,梯形PEAC的面积为s.
①求s与a的函数关系式,并写出a的取值范围;
②⊙Q是△OAB的内切圆,求当PE与⊙Q相交的弦长为2.4时点P的坐标.

manfen5.com 满分网
(1)已知一次函数的解析式,把已知坐标代入求出点A的坐标; (2)根据勾股定理求出AB后再利用三角函数求出cos∠CBA,BD,AD的值.证明△PBD∽△EAD,利用线段比求出AE的值.最后可求S梯形PEAC.已知S△OAB,求出r的值.根据勾股定理求出QM,又因为已知BC,BA的值,根据三角函数求出BP与BD的等量关系.继而求出点P的坐标.当PE的圆心Q的另一侧时,同理亦可求点P的坐标. 【解析】 (1)把B(0,6)代入y=-x+m,得m=6, 把y=0代入y=-x+6,得x=8, ∴点A的坐标为(8,0); (2)在矩形OACB中,AC=OB=6, BC=OA=8,∠C=90°, ∴AB=, ∵PD⊥AB, ∴∠PDB=∠C=90°, ∴, ∴, ∴, 又∵BC∥AE, ∴△PBD∽△EAD, ∴,即, ∴, ∵S梯形PEAC=, ∴(4.5≤a<8), (注:写成4.5<a<8不扣分) ②⊙Q是△OAB的内切圆,可设⊙Q的半径为r, ∴, 解得r=2, 设⊙Q与OB、AB、OA分别切于点F、G、H, 可知,OF=2, ∴BF=BG=OB-OF=6-2=4, 设直线PD与⊙Q交于点I、J,过Q作QM⊥IJ于点M,连接IQ、QG, ∵QI=2,, ∴, ∴在矩形GQMD中,GD=QM=1.6, ∴BD=BG+GD=4+1.6=5.6, 由, 得, ∴点P的坐标为(7,6), 当PE在圆心Q的另一侧时,同理可求点P的坐标为(3,6), 综上,P点的坐标为(7,6)或(3,6).
复制答案
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.manfen5.com 满分网
查看答案
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)若点M是manfen5.com 满分网的中点,CM交AB于点N,AB=8,求MN•MC的值.

manfen5.com 满分网 查看答案
有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:
(1)若此单位需购买12台图形计算器,应去哪家公司购买花费较少?
(2)若此单位恰好花费7280元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?
查看答案
在直径为650mm的圆柱形油罐内装进一些油后,其横截面如图,若油面宽AB=600mm,求油的最大深度.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2-6x+k=0有两个实数根.
(1)求k的取值范围;
(2)如果k取符合条件的最大整数,且一元二次方程x2-6x+k=0与x2+mx-1=0有一个相同的根,求常数m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.